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Abstract—Energy storage systems (ESS) are essential for 
the development of electric vehicles in the future. 
Regardless of this, there is still need for improvement in 
the safety and administration of ESS. An essential part 
of any ESS that uses Lithium-ion batteries (LIB) is the 
battery management system (BMS). The battery's state 
of charge (SOC) is an important parameter of the 
battery management system. In recent years, SOC has 
recently emerged as a hotspot for BEV research. Energy 
storage has emerged as a top priority for contemporary 
communities, and lithium-ion chemistry battery 
technology has proven to be a highly effective solution 
for storage applications. State of charge (SOC) denotes 
the available battery capacity and is one of the most 
crucial states that must be monitored to optimize battery 
performance and prolong battery life. This article 
provides a summary of the methodologies for estimating 
the SOC of lithium-ion batteries (LIBs).The SOC 
estimation methods are presented with an emphasis on 
describing the techniques and elaborating their 
limitations for use in on-line battery management system 
(BMS) applications. SOC estimation is a difficult 
undertaking hampered by significant changes in battery 
characteristics over the battery's lifetime due to ageing 
and distinct nonlinear behavior. This has prompted 
researchers to propose a variety of methods that have 
made it difficult to establish a correlation between the 
accuracy and robustness of the methods and their ease 
of implementation. This paper is an exhaustive review of 
the works presented over the past decade, during which 
estimation techniques have tended towards a hybrid of 
probabilistic and artificial intelligence techniques. The 

review concludes with a concise discussion of difficulties 
associated with BEV LIB SOC prediction investigation 
 
Keywords -- State of charge (SOC), Battery electric 
vehicle, Battery management system. 
 

I. INTRODUCTION 
In recent years, the development of sophisticated and 
intelligent state-of-charge (SOC) estimators for LIBs has 
become an hotspot area of study. SOC's advancement is 
hampered by three primary technological obstacles. The 
first is that the structure of lithium ion battery is nonlinear, 
making accurate modeling challenging. This is due to the 
multiscale nature active materials, cells and battery packs all 
have distinct spatial scales and time scale aspects (such as 
ageing).In middle, the internal environment is highly 
challenging to determine and subject to external 
environment fluctuations. When transitioning from 
laboratory production of lithium ion batteries to industrial 
production, the correlation between calculated and real 
values declines. This makes it difficult to verify with 
certainty the states that are present inside the battery. Lastly, 
the disparities between LIBs have a direct impact on the 
efficacy of the LIB pack, increasing the LIB's instability. 
Estimation methods that were developed for smaller LIBs 
are unnecessary for large-scale LIBs and it is challenging to 
arrive at an accurate and reliable estimate of SOC. For this 
reason, cutting-edge SOC methodologies are necessary as 
soon as possible in order to conquer these challenges[1,2]. 
A variety of methods have been developed for SOC 
estimation. The online methods can be used to estimate the 
battery's state in real time. Due to stringent experimental 
schemes or high computational costs, however, offline 
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methods are inapplicable during battery operation. Methods 
for estimating online SOC can be categorized into three 
groups: the ampere-hour counting (AHC) method, the 
model-based method, and the data-driven method. In 
practice, the AHC method is subject to initial SOC error and 
accumulative measurement system error [3]. As a result of 
the weak estimation accuracy, it is unsuitable for online EV 
applications.  
On the basis of the functional OCV–SOC relationship, the 
open-circuit voltage (OCV) method is implemented. 
However, the OCV of the battery can only be measured 
after an extended period of repose, rendering it unsuitable 
for real-time SO estimation. In addition, the OCV exhibits 
differences between charge and discharging processes at the 
same SOC level due to hysteresis effects, which impacts the 
accuracy of SOC estimation [4]. 
The offline methods comprise of capacity and internal 
resistance measurements, since capacity and internal 
resistance are the two most important battery degradation 
parameters. The SOH of a battery can be determined by 
measuring these two degradation characteristics using 
specialized experiments. For instance, the measurement of 
capacity must be exhausted at a slow rate until the battery's 
cutoff voltage is reached. Current methods for estimating 
SOC can be categorized as model-based, data-driven, and 
advanced sensing-based. With the rapid development of 
LIBs and EVs, more research papers on advanced condition 
monitoring technologies have appeared in the past three 
years. This progressively renders obsolete the review work 
discussed previously. In order to close the lacuna in 
research, this paper examines in detail the most recent 
developments in SOC estimation of LIBs. Science Direct 
and IEEE are the primary resources for finding relevant 
articles using keywords such as electric vehicles, lithium ion 
battery, and state of charge. The contributions of this review 
are as follows, in comparison to previous research: (1) The 
SOC/SOH estimation methods are divided into two 
categories, i.e. online and offline ones. The promising 
online estimation methods are specially discussed. For 
online SOC estimation, primarily model-based and data-
driven methods are introduced. In addition, the online SOH 
estimation is comprised of (DA) methods, model-based 
methods, and data-driven methods. (2) Existing online co-
estimation strategies for both SOC and SOH are first 
discussed in this paper in order to fill in research voids in 
the field of joint estimation. Then, it is examined from the 
perspectives of model-based methods, data-driven methods, 
and sophisticated sensing-based methods. (3) On the basis 
of the classification of state estimation, the most recent 
research methods are selected and evaluated with respect to 
their advantages and disadvantages in terms of their 
practical applications. For the advancement of online SOC 

estimations of LIBs, (4) a list of critical issues and future 
work is proposed. Battery state estimation is a crucial 
sophisticated BMS function in BEVs. Accurate modeling 
and state estimation will enable stable operation, facilitate 
optimal battery operation, and lay the groundwork for 
security supervision [5]. This article discusses BEV lithium 
ion battery SOC modeling, estimation, and methodologies. 
The review concludes with a concise discussion of 
difficulties in lithium ion battery SOC investigation 
prediction along with its challenges. 
 

II. DEFINITION OF SOC 
SOC is defined as the percentage of the remaining capacity 
to the maximum available capacity of the battery and it can 
be given by 
SOC (t) = Cr

Cm
× 100%   (1) 

Where Cr stands for the remaining capacity that can be 
powered to electric devices. Cm specifically presents the 
maximum available capacity that the cell can store, which is 
determined 
by the electrochemical characteristics of the battery.SOC 
ranges from 0% to 100% in value. A SOC of 0% indicates 
the battery is completely drained. While a SOC of 100% 
means the battery is fully charged. In practice, the battery 
operates between 20% and 80% SOC to prevent over-
discharging. Due to the relationship between 
charging/discharging current and battery capacity, SOC can 
also be expressed using the equation (2). 
SOC (t) = SOC (t0)−∫

I(t)η
Cm

t
t0

dt(2) 
where SOC (t0) and SOC (t) represent the SOC at the initial 
timet0 and time t, respectively. η signifies the coulombic 
efficiency, which is the ratio of the discharge capacity to the 
charge capacity within the same cycle. The current I(t) 
varies with respect to time in which it is negative in 
charging state and positive in discharging state. And a 
discrete form of Eq. (2) can be described as 
SOCk= SOCk-1−

ηΔT
Cm

Ik(3) 
where ΔT is the sampling time, and Ik is the loading current. 
SOCk and SOCk-1 represent the battery SOC at time step k 
and k-1, respectively. 
In fact, the SOC values can be directly calculated when 
determining the initial SOC value according to previous 
equations. In practical applications, however, the inaccurate 
initial SOC value and the cumulative errors caused by the 
measurement system can result in significant estimation 
error. As a result, there is a growing interest in investigating 
advanced methods for more accurate real-time SOC 
estimation. 
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Fig .2 SOC Estimation method 

 
III. BATTERY MANAGEMENT SYSTEMS (BMS) 

A BMS is a device that is built with hardware and software 
that control the operational conditions of the battery to 
prolong its life, guaranteeing its safety and providing energy 
management with an accurate estimation of the battery's 
various states. To accomplish this, a BMS is equipped with 
a variety of features to control and monitor the battery's 
state at the battery cell, battery module, and battery pack 
levels [6]. The ability of a battery to store energy diminishes 
as it ages. Condition of health (COH) is an indicator of this 
decline. The battery's remaining useful life (RUL) is the 
amount of time or load cycles left until it hits the end of its 
life (EOL). A BMS must be more than just a protective 
circuit; it must also be a thorough and accurate device that 
can anticipate the SOC, SOH, RUL, capacity, and available 
power in order to maximize the battery's efficiency and 
safety. The aforementioned parameters can be determined 
by continuously measuring current, voltage, and 
temperature in battery. The literature describes numerous 

approaches to designing a BMS based on the functionalities 
desired for a particular application, but the majority of them 
concentrate on a specific BMS function, such as SOC 
estimation [8-20] or the balancing process. [21-25]. Few 
studies present BMS research from a global perspective like 
[26], which demonstrates a BMS design employing a 
distributed structure for improved scalability and portability. 
As previously stated, the current trend for EVs and HEVs is 
the design of intelligent BMS, which requires research in 
artificial intelligence applied to battery state estimation [27]. 
Large battery cells for applications such as EVs and grid 
integration require a predictive and adaptive BMS based on 
models [28-30]. In the study described in [31], a The BMS 
estimates the state of charge (SOC) based on a seventh-
order, single-particle battery model with electrolyte 
diffusion and temperature-dependent components that 
exploit the Li ion cell's reaction changes as temperature 
changes. 

 

 
Fig.3Battery Management Systems 
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IV. OVERVIEW OF SOC MODELING APPROACHES 
For model-based SOC estimation the battery models are 
very helpful and it can be classified into physical 
electrochemical models [32], electrical equivalent circuit 
models [33-35], and data-driven models [36,37], with the 
latter two models being routinely employed in SOC 
estimation. These models with emphasis on data-driven 
models and electrical equivalent circuit models has been 
introduced in this section. 
 
4.1 Physical Electrochemical Models: 
The simple model for physics-based electrochemical 
analysis [38] is the single-particle model. The concentration 
of Li-ions in the electrode is represented by a single particle. 
Primary output and the solid-phase diffusion impact of 
electrodes can both be analyzed with this model.but its 
precision is inadequate. To increase precision, a model has 
been created that takes into account the effect of the 
electrolyte on the output potential and proposes liquid 
electrolyte material conservation using a partial differential 
equation [39]. The anode and cathode of a cell have been 
modeled as porous, ball-like particles with electrolyte 
occupying the spaces in between. Due to the presence of 
multiple coupled partial differential equations in the pseudo-
two-dimensional model, it must be simplified from an 
engineering standpoint [40-43]. A significant reason why 
physics-based models are difficult to implement is that a 
large number of indeterminate variables must be defined by 
means such as global optimization. Obviously, they may 
experience over fitting or local optimization problems. 
Without accurate and exhaustive parameters, the open loop 
simulations of physics-based electrochemical models are not 
optimal for SOC calculations. Despite their high accuracy, 
high-resolution detailed models typically contain a large 
number of nonlinear partial differential equations that make 
model solving computationally intensive and prohibit online 
estimation. Online estimation applications benefit greatly 
from reduced-order models because of their simplicity and 
reduced computing requirements in comparison to full-order 
models. [44]. These advantages, however, are paid for with 
higher estimating mistakes. 
 
4.2 Electrical Equivalent Circuit Models- 
The popularity of electrical equivalent circuit models has 
increased in recent years due to their more straightforward 
construction, which enables their incorporation into real-
time applications. Models of electronic Energies 2021, 14, 
3284 3 of 24 counterparts use electrical components to 
imitate LIB behavior. Models like these can be broken down 
into two categories: integral-order and fractional-order. 
 
4.2.1 Integral-Order Models- 
The majority of equivalent circuit models that are 
commonly employed are integral-order models. The Rint 

model is the most widely utilized integral-order model [45]. 
The Rint model has a simple structure, However, it does not 
take into account the dynamics of polarization or diffusion. 
The resistor–capacitor model, a first-order model capable of 
simulating LIB charging and discharging behavior with a 
single resistor–capacitor network[46]. In addition, the 
behavior of the open-circuit voltage hysteresis can be taken 
into consideration to improve the precision of the 
model[47]. It is straightforward to infer the input/output 
relationship of the LIB from integral-order analog circuit 
models. In light of this, the least-squares recursive algorithm 
is the most prevalent technique for online parameter 
detection. In addition, a co-estimator has been suggested for 
predicting model parameters and battery status [48]. This 
can take the form of parameter identification based on 
electrochemical properties [49] or a genetic algorithm with 
multiple objectives [50]. 
 
4.2.2 Fractional-Order Models- 
Due to their fractional nature, models based on fractional-
order calculus are also often used in modeling. Modeling the 
electrochemical processes of lithium ions can be done in an 
accurate way using a technique called electrochemical 
impedance spectroscopy (EIS). However, it is quite 
challenging to estimate SOC using only EIS; consequently, 
many fractional-order models are employed in conjunction 
with EIS to improve estimation [51]. Some studies use Bode 
plots [52] to assist circuit models with estimation 
improvement. However, in order to use electrical equivalent 
circuit models for efficient online SOC estimate, an 
appropriate parameter identification approach (either online 
or offline) must be used. Some examples of such methods 
include curve fitting, recursive least square, particle swarm, 
and genetic algorithm. In addition to capacitors, resistor–
capacitor networks can also incorporate constant phase 
elements [53]. A genetic algorithm can classify model 
constraints with an error of 0.5% using a simplified 
fractional-order impedance[54].Model constraints can also 
be classified with high precision and robustness using 
Model derivatives with non-integer values and a particle 
swarm optimization algorithm. [55]. Commonly employed 
to estimate SOC in LIBs [56, 57] are fractional-order 
equivalent circuit models with Kalman filter alternatives. 
 
4.3 Data-Driven Models- 
Commonly, data-driven methods are used to design LIB 
models. The majority of data-driven online SOC estimation 
techniques are founded on machine learning techniques 
(such as neural networks, support vector machines, and 
fuzzy logics). Experiments on LIB have confirmed the 
effectiveness of the proposed neural-based thermal-electric 
coupled model [58]. It is also possible to estimate data by 
combining neural networks with particle filtering [59]. A 
3D Monte Carlo model has recently demonstrated the 
structural evolution of solid sulfur and lithium sulfide 
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dissolution and precipitation during lithium-sulfur battery 
discharge. [60]. A recent Monte Carlo 3D model illustrates 
the structural evolution of solid sulfur and lithium sulfide 
dissolution/precipitation during lithium-sulfur battery 
discharge using dynamic simulation technology. The kinetic 
model can predict battery changes over extended time 

periods. Even though data-driven techniques are effective in 
nonlinear scenarios, they can be impacted by the datasets 
and training method logic employed. In addition, a large 
data set is required to account for all potential working 
conditions. This indicates that the overall cost of computing 
is substantial. 

 
Fig.4.3 Establishing DDM 

 
V. SOC ESTIMATION METHOD 

Lithium-ion capacitor according to Table 5, SOC estimation 
methods can be broadly divided into four categories. Here, 
conventional methodologies are not required to construct a 
battery model or identify its parameters. The ampere hour 
integration (AHI) method is often used to estimate the SOC 
of lithium- ion batteries together with the OCV method. The 
AHI method requires knowledge of the initial SOC value 
and the charging and discharging currents of lithium ion 
batteries. If the initial value is ambiguous, the estimated 
charging state of the battery deviates significantly from the 
actual value. Both the OCV method and the internal resistor 
(IR) method establish the relationship between voltage, IR, 
and SOC, and then estimate the SOC based on this 
relationship. However, the OCV technique requires a 
lengthy holding period, whereas the IR method is excellent. 
The AHI method requires knowledge of the initial SOC 
value and the charging and discharging currents of 
lithiumion batteries. If the initial value is ambiguous, the 
estimated charging state of the battery deviates significantly 
from the actual value. Both the OCV method and the 
internal resistor (IR) method establish the relationship 

between voltage, IR, and SOC, and then estimate the SOC 
based on this relationship. However, the OCV technique 
requires a lengthy holding period, and the IR method is 
highly temperature dependent. Significantly affected by 
temperature. Both the observer and filter methods are 
fundamentally model-based, with the observer method 
utilizing modern control theory to estimate battery SOC. 
First, by analyzing the ECM characteristics of the battery, 
the battery state space model expression including the SOC 
is established. Then, using the control theory observer 
design method, the state observer is designed to estimate the 
SOC value. This procedure is difficult to implement because 
it requires expert-level knowledge of automatic control and 
mathematical matrix theory. The filtering method is mainly 
based on the characteristics of correction and recursion of 
various filters. It has excellent measurement precision and 
can measure dynamic SOC. The intelligent algorithm is 
independent of the model, has high recognition accuracy 
when sufficient data is available, and is appropriate for 
computer implementation. These two methods are currently 
the most popular research topics in SOC estimation [55-60].  
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Category Specific method 
Filter method particle filter, KF, 

unscented KF, extended 
KF, H∞ filter, etc. 

Intelligent algorithm neural network, fuzzy 
logic, SVM, genetic 
algorithm, etc 

Observer method nonlinear observer, sliding 
mode observer, 
proportional integral 
observer, etc. 

Traditional methods AHI, OCV, IR, etc. 
TABLE.5.SOC Estimation Method 

 
5.1 Filter methods in SOC estimation- 
The KF method has advantages such as real-time 
performance monitoring in online recursive modeling, less 
demand for storage capacity during operation, and closed-
loop control. KF, extended KF (EKF) [38], and unscented 
KF [39] are commonly used in research. The KF is a 
popular adaptive filter for linear models, but it is 
inappropriate for nonlinear models. The EKF technique, an 
extension of the KF method, can be applied to complex and 
nonlinear models. However, because the EKF method needs 
to linear the approximation of It is not accurate to calculate 
nonlinear functions using the first- or second-order terms of 
the Taylor formula and the Jacobian matrix. To overcome 
these shortcomings, the unscented KF has been not only 
does it not require the calculation of the Jacobian matrix, 
but it also provides more accurate SOC estimations than the 
EKF. However, the statistical information of battery noise 
(such as model and measured noise covariance) is presumed 
to be accurate in each of the previously mentioned KF 
methods. If the noise statistics are inaccurate, the estimation 
of SOC based on the above KF will be unstable or even 
divergent, and the adaptation speed will be too sluggish 
[40]. To solve these problems, the adaptive KF, adaptive 
EKF [41], and adaptive unscented KF [42-44] are used 
online noise statistics estimations incur additional 
calculation costs. Only when the statistical properties of 
system noise are predicted can the KF filtering algorithm 
produce more accurate estimations. Therefore, the actual 
precision of KF filtering in SOC estimation cannot 
frequently satisfy engineering specifications. If accurate 
prior system information cannot be predicted, it is necessary 
to increase the value of the noise covariance matrix when 
designing the KF in order to increase the utilization weight 
of real-time measurement and decrease the utilization 
weight of one-step prediction. This practice is commonly 
referred to as adjusting. However, tuning is blind, and it is 
impossible to predict by how much the noise covariance 
matrix must be increased to obtain the highest estimation 
precision. In addition, if the measurement noise and process 
noise of the system are not white noise, or if there is 

deviation, the Kalman filtering effect will be severely 
diminished or even divergent. Both noise and measurement 
noise are presumed to be zero-mean Gaussian white noise in 
the KF estimation model. In practical applications, it is 
challenging to actualize this assumption due to 
environmental interference noise, which may explain the 
biased distribution and negatively impact the accuracy and 
convergence behavior of SOC estimation using s KF. To 
address this issue, particle filter and unscented particle filter 
methods [45,46] are studied to estimate battery SOC. Due to 
the large number of computational requirements and the 
high memory consumption, these filters are unsuitable for 
online SOC estimation in real-world applications. The H 
filtering algorithm is also used to estimate the state of 
charge (SOC) of batteries requires the noise signal of the 
system to be online noise statistics estimations incur 
additional calculation costs. Only when the statistical 
properties of system noise are predicted can the KF filtering 
algorithm produce more accurate estimations. Therefore, the 
actual precision of KF filtering in SOC estimation cannot 
frequently satisfy engineering specifications. If accurate 
prior system information cannot be predicted, it is necessary 
to increase the value of the noise covariance matrix when 
designing the KF in order to increase the utilization weight 
of real-time measurement and decrease the utilization 
weight of one-step prediction. This practice is commonly 
referred to as adjusting. However, tuning is blind, and it is 
impossible to predict by how much the noise covariance 
matrix must be increased to obtain the highest estimation 
precision. In addition, if the measurement noise and process 
noise of the system are not white noise, or if there is 
deviation, the Kalman filtering effect will be severely 
diminished or even divergent. Both noise and measurement 
noise are presumed to be zero-mean Gaussian white noise in 
the KF estimation model. In practical applications, it is 
challenging to actualize this assumption due to 
environmental interference noise, which may explain the 
biased distribution and negatively impact the accuracy and 
convergence behavior of SOC estimation using KF. To 
address this issue, particle filter and unscented particle filter 
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methods [45,46] are studied to estimate battery SOC. Due to 
the large number of computational requirements and the 
high memory consumption, these filters are unsuitable for 
online SOC estimation in real-world applications. The H 
filtering algorithm is also used to estimate the state of 
charge (SOC) of batteries. [49,50]. 
 
5.2 Intelligent algorithms in SOC estimation- 
Even though there has been a lot of development in modern 
sensor technology, it is still not possible to do an accurate 
measurement of SOC anywhere other than in a laboratory in 
a very specific setting. Nevertheless, the SOC is commonly 
estimated using the battery's voltage, current, and 
temperature. This is due to the fact that the SOC has a 
strong correlation with these observable characteristics. 
Estimating SOC based on observations is typically done 
with the help of intelligent algorithms, which are the high-
order algorithms that are employed the most. SVM and 
artificial neural networks are two examples of intelligent 
algorithms that are frequently utilized in the process of SOC 
estimation [7,38,51].However, both techniques suffer from 
two flaws, both of which negatively impact the accuracy of 
SOC estimation. To begin, the input data consist of the 
feature information that was extracted from the original 
data. This process requires human design, which in turn 
necessitates a significant amount of personnel and expert-
level knowledge. Second, the model structure employs a 
superficial learning architecture, which lacks adequate 
analytical capability and makes it difficult to manage high-
dimensional data. Deep learning, an essential component of 
machine learning, provides effective solutions to the 
aforementioned problems. One can construct a deep neural 
network (DNN) using a multilayer nonlinear transformation 
and extract complex feature information from input data 

using deep learning technology. Several SOC estimation 
techniques based on DNNs have been proposed recently. In 
[52], a SOC estimator was built using a multilayer 
perceptron network and trained using signals measured at 
various ambient temperatures. The outcomes demonstrated 
that the trained model can decrease the SOC estimation 
error. On the basis of this investigation, the benefits of using 
a network with long short-term memory (LSTM) to extract 
time information from time series data have been examined. 
Tian Y et al. and Yang F et al. Gated cyclic unit (GRU) 
networks, a variant of the recurrent neural network (RNN), 
have also been applied to SOC estimation. In [18,55], a 
GRU structure was incorporated into an RNN to enhance 
the modeling capability of the nonlinear behavior of 
lithium-ion batteries, and two models using current and 
voltage signals as inputs were developed to estimate the 
SOC. It was proposed and used to estimate the SOC of two 
lithium-ion battery data sets at different ambient 
temperatures [56,57] using a simple estimation model based 
on the GRU. The above RNN-based method offers three 
advantages over the conventional SOC estimation 
technique: The RNN can transfer the battery measurement 
data directly to the SOC value without the need for 
additional battery models based on the operating 
parameters. 2. The RNN can learn the weight and deviation 
using the gradient descent algorithm, which is quite distinct 
from the mathematical model that requires considerable 
effort to explicitly design and parameterize. 3. The RNN 
with a set of network parameters can estimate SOC under a 
variety of ambient temperatures, whereas other traditional 
methods require models with distinct parameter sets for 
various working conditions. Various SOC methods withs its 
principle is given below in the table 2. 

 
Method Principle 
AHI Integrates the current 

beneath the known initial 
SOC value. 

OCV Nonlinear relationship 
between OCV and SOC 

IR Relationship between 
internal resistor and SOC 

Observer method Principle of control theory 
observer 

Filter method State equation and 
measurement equation 
recursion 

Intelligent algorithm Intelligent algorithm with 
the capability to simulate 
nonlinear battery 
characteristics 

TABLE 2: Methods with principle 
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VI. THE PROSPECTS FOR SOC ESTIMATION 
Since energy storage systems have been highlighted in 
applications for portable electronics and hybrid electric 
vehicles, the accuracy of SOC estimation becomes 
increasingly crucial. The accuracy of estimates has steadily 
increased, and intensive research and development efforts 
are likely already underway. In order to increase SOC 
estimates further, additional research is anticipated to 
include the following enhancements. 
(i) Conduct additional research on hybrid methods, such as 
combining the direct measurement method with the 
bookkeeping estimation method, in order to accomplish 
accurate online SOC estimation. 
(ii) The existing estimation procedure should be applied to 
multiple battery types. Conduct additional research on the 
ubiquitous practical application of the methods. 
(iii) Conduct additional research to enhance the SOC 
estimation system's ability to account for the effect of 
battery deterioration. 
(iv) Study more innovative artificial intelligence methods 
and enhance their training algorithms to improve the 
accuracy of SOC estimations. In addition, the focus of 
future research will be on the development of novel 
methods for navigating complex terrain. 
To further enhance the estimation performance of the neural 
network method, it is necessary to investigate and 
incorporate optimal search methods for the optimal number 
of neurons in the hidden layer. 
Perform additional investigation on adaptive parameter 
estimation. The models can automatically adjust to varying 
battery types, discharging conditions, and battery age. 
(vii) Make the assessment system and performance 
measurement standard for the SOC estimation method as 
accurate as possible. 
 

VII. CONCLUSION 
This paper critically reviews SoC estimation methodologies 
presented by researchers, presenting the fundamentals and 
main drawbacks of each method. From the review of the 
different approaches, it can be concluded that the hardest 
part of obtaining a battery SoC estimation is to build a 
model that reflects the reality inside the battery, including 
the impact of temperature dependencies on internal 
resistance and capacity fading. It is also possible to draw the 
conclusion that the precision of the SoC estimation may be 
impacted by factors such as the inaccuracy of the modeling, 
the uncertainty of the parameters, the imprecision of the 
sensors, and the measurement noise. Other elements, such 
as self-discharge, effects of age, imbalance between cells, 
capacity fade, and temperature impacts, all have an impact 
on the performance of the battery. In order to estimate the 
SoC, with the latter two models being routinely used in LIB 
SoC estimation in BEVs. However, the precision of these 
approaches is limited, and this might become an issue when 

attempting to monitor the state of the LIB in the most 
effective way. To establish the status of the system, another 
option is to employ estimating methods that are based on 
look-up tables, ampere-hour integrals, filter-based, 
observer-based, or data-driven algorithms. These methods 
do cause some mistake, but they enable for a higher level of 
accuracy to be achieved when estimating the state of LIBs. 
They can also demand a big amount of processing power, 
which can extend the process of collecting an estimated 
state by a significant amount of time. Research should 
concentrate on optimizing estimate methodologies that 
enable SoC estimation without requiring a considerable 
amount of computer resources in order to advance the state 
of the art in SoC estimation. Additionally, the accumulation 
of errors should be reduced by enhancing the fundamental 
understanding of battery operation. The estimation error 
should be minimized by emphasizing on capacity-induced 
error, initial SoC error, current measurement error, and 
voltage measurement error. In order to accomplish this, 
numerous obstacles must be surmounted. Using internal 
optical fiber sensing, multi-state estimation, estimated 
model parameter accuracy, and operating conditions could 
mitigate such obstacles. Overall, substantial progress 
remains to be made in this field of study, but the 
convergence point is nearing. 
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